EPA's Nonroad Regulatory Effort

U.S. EPA Clean Air Act Advisory Committee April 12, 2000 Alexandria, VA

Overview

- Background on Nonroad CI
- Current Standards for Nonroad
- Inventory Impacts
- On-going Efforts
- Issues to be addressed

Background of Nonroad Regulations

- 1991: EPA study found that nonroad diesels (tractors, bulldozers, ...) are large part of ozone and PM problem
- 1994: EPA set Tier 1 standards -- modest NOx control phasing-in between 1996 and 2000
- 1996: Worked with industry, California, and other stakeholders to develop common statement of principles for stringent new standards; published advance notice
- **1997**: Gained small business input thru SBREFA panel
- **1997**: Published proposal (Sept 24)
- **1998**: FRM Signed (August 27)
- **2001**: Nonroad Technology Review
 - Statutory Authority: Clean Air Act §212, §217, and §222

Nonroad Standards Now

NMHC+NOx/PM in g/hp-hr										
hp	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
	Tier 1						T ie r 2			
<11		7.8 0.75					5.6 0.60			
≥11 <25		7.1 0.60					5.6 0.60			
≥25 <50	7.1 0.60					5.6 0.45				
		Tier 2						Tier 3		
≥50 <100						5.6 0.30				3.5 *
≥100 <175					4.9 0.22				3.0 *	
≥175 <300					4.9 0.15			3.0 *		
≥300 <600			4.8 0.15					3.0 *		
≥600 <750				4.8 0.15				3.0 *		
≥750								4.8		

Nonroad Diesel FRM Standards

* These PM standards are not established in the FRM.

It is anticipated that by 2007,

Nonroad Diesel Inventory

GLC1

 More than 50% of mobile source NOx emissions will be due to Nonroad Applications.

• and

• Over 70% of mobile source PM emissions will be due to the Nonroad Market

The Road Ahead

- Nonroad Tier 3 Technology Review NPRM will address:
 - Initiating a more effective and stringent PM control strategy
 - Review of NMHC+NOx standards for this phase
 - Instituting an in-use control effort for the nonroad market
 - Assessment of diesel fuel sulfur level to enable control technology
- Targeting the end of 2001 for the Nonroad Tier 3 FRM

Preparing for the 2001 Rulemaking

- Controlling PM in the Real World
 Maintaining Harmonization
 - Maintaining Harmonization
- Understanding Inventory Implications
- Evaluating Diesel Fuel Implications
- Reviewing Updated Cost of Compliance Information

PM Control

- In-Use Control Component
- Supplemental transient test cycle needed
 - Data collected to date indicates the transient nature of nonroad equipment operation
 - PM generation is heavily influenced by transient operation
 - To ensure effective in-use control of PM emissions a supplemental transient test cycle must be added
- Demonstration Engine Effort
- Ten Engine Program to support Test Cycle Selection for PM Control

Real World Nonroad Activity

Time (seconds)

In-Use Control

- Likely use of NTE (Not to Exceed) Zone similar to on-highway
 - Similar Zone Dimensions
 - Limit Value appropriately tailored to nonroad
 - Expanded Temperature and Humidity Limits similar to On Highway
 - Applicable to NOx and PM

Not To Exceed Zone(s)

Backhoe Loader Microtrips and Weightings

- Five microtrips
- 508 Seconds
- The percentage of time which the cycle spends on a microtrip is based on the percentage of time spent in actual operation

Backhoe Loader

Nonroad Low Emissions Engine Development Effort

- 50 100 hp Category
- NOx + HC 3.3 g/hp-hr (.38 HC)
- PM 0.113 g/hp-hr
- Fuel Economy Penalty @ rated .8%
- Current Technology: Cooled EGR, Aftercooling, Electronic Rotary Injection Pump, and VNT.

Meeting the Targets

Development Targets 3.5 g/hp-hr NOx +HC 0.1 g/ hp-hrPM

How did we do?

Ten Engine Duty Cycle Emissions Evaluation Program

- Will provide emissions data on a wide variety of engines over a plethora of <u>real world</u> <u>nonroad</u> duty cycles
- Will provide comparison data for the CVS and PFSS
- Will provide additional chemical characterization of PM resulting from operation of these <u>nonroad</u> engines over <u>nonroad</u> cycles

What about Nonroad Diesel

- Assuming transfer of some on highway engine technology to nonroad applications
- Fuel sulfur reduction to enable comparable engine technologies
- Current on-highway certification fuel Sulfur level is an option
 - One proposal the Agency has received from industry includes a 500 ppm S cap for nonroad.
 - Due to distribution concerns and other issues locomotive, marine, and possibly home heating oil may have S levels comparable to nonroad.

How much will this cost?

- Benefit derived from economies of scale due to transfer of technology from highway market
- Many technologies may be a direct match between highway and nonroad and so most R&D for component design accounted for

Next Steps

• Issues to be addressed in this effort:

- Pull Ahead (300 hp to 750 hp)
- Fuel Effects
- Air Quality Justification
- Supplemental Test
- SBREFA
- PM Control
- FRM by the end of 2001
- and eventually transfer aftertreatment technology to nonroad