Recent Developments in Integrated Diesel Exhaust Emission Control Technologies

Presented to the Mobile Sources Technical Review Subcommittee - 10/13/99

Manufacturers of Emission Controls Association

Recent Developments in Integrated Diesel Exhaust Emission Control Technologies

Mobile Source Technical Review Subcommittee

October 13, 1999

Presentation Outline

• Introduction
• Targeted Emissions
• Control Technologies for PM and Toxic Emissions
• Control Technologies for NOx Emissions
• Control Systems
• Conclusions
Manufacturers of Emission Controls Association

Introduction

- Significant Progress Has Been Made in Reducing Emissions from Diesel Engines
- Diesel Powered Vehicles Remain a Significant Source of NOx, PM, and Toxic HC Emissions
- Emission Control Technologies Exist to Substantially Reduce Emissions from Diesel Engines
- Technologies Can Be Used in Combination to Substantially Reduce All Emissions

Manufacturers of Emission Controls Association

The Future Diesel Challenge

- Current Standards Focus on NMOG, NOx, PM, CO, and Formaldehyde Emissions in Terms of grams/bhp-hr or grams per mile
- California’s Toxic Air Contaminants and EPA’s Urban Air Toxics Initiatives
- Particle Number Issues
- Therefore, the Emission Challenge Will Be More Complex
 * >200 Species of HC
 * Three Major Species of NOx
 * PM (many species, size range <10 nm to >2 microns, number, liquid and gaseous HCs, solid carbon, carbon/organic combinations and sulfur oxides)
The Future Diesel Emission Challenge

• Can All Facets of the Diesel Emissions Issue Be Addressed?
 * Are Control Technologies Available to Remove Both Diesel PM and the Other HC-Based Toxic Emissions?
 * Are These Control Strategies Compatible with Further Reductions in NOx Emissions?
• Yes, If an Integrated Approach Is Used
 * Advanced Engines, Integrated Emission Control Technologies, and Clean Fuels

Technological Solutions

• Existing Emission Controls Can Greatly Reduce Diesel Emissions
 * Oxidation Catalysts, Particulate Filters, Fuel-Borne Catalysts in Combination with Exhaust Controls, Coatings, Modified Engine Components

• Advanced Emission Control Technologies
 * NOx Catalysts, SCR, Plasma Technology, Combined Systems

• New Engine Technologies
 * Common Rail Injection, EGR
Technological Solutions (Cont.)

- Advanced Fuels
 * Low Sulfur, Other Properties (Reductants)
- Integrated Emission Control Will Allow Diesel Engines to Meet the Future Challenges

Light Duty vs. Heavy Duty Catalyst Operating Temperatures

- Light Duty
 * LA-4 150-350C
 * USO6 250-550C
- Heavy Duty
 * Transient 180-450C
 * Supp EURO III 300-430C
Manufacturers of Emission Controls Association

Diesel Oxidation Catalysts

- Oxidation Catalyst Control Capabilities
 * PM -- 20-50% Reduction
 * CO and HC -- >90%
 * Toxic HCs -- >70%

- Oxidation Catalyst Operating Experience
 * >5,000,000 Light-Duty Vehicles in Europe
 * >1.5 Million HDEs in the U.S.
 * >250,000 Nonroad Engines
 * Excellent Operating Experience

Oxidation Catalysts Oxidize CO, HC, and SOF to Reduce PM, CO, HC, and Toxic Emissions.
Recent Developments in Integrated Diesel Exhaust Emission Control Technologies

Presented to the Mobile Sources Technical Review Subcommittee - 10/13/99

Manufacturers of Emission Controls Association

Diesel Oxidation Catalysts Are Proven Effective in Removing PM

- 0.05 g/bhp-hr PM Emissions Can Be Achieved on Both Fuels
- Significant Reductions in CO and HC Emissions Can Be Achieved

![Graph showing PM emissions comparison](chart1.png)

Source: MECA 1999

Manufacturers of Emission Controls Association

Diesel Oxidation Catalysts Are More Effective when Used With Low Sulfur Fuel

![Graph showing PM emissions comparison](chart2.png)

Source: MECA 1999
DOCs Destroy Large Fractions of Toxic Emissions

- Toxic Hydrocarbon Compounds Reduced by 68%
- PAH Emissions Reduced by 56%
- 368 ppm Sulfur Fuel

Diesel Particulate Filters Trap Carbon and Adsorbed SOF and Can Be Used to Oxidize CO, and HC to Reduce PM, CO, HC, and Toxic Emissions.
Recent Developments in Integrated Diesel Exhaust Emission Control Technologies

Presented to the Mobile Sources Technical Review Subcommittee - 10/13/99

Dale McKinnon, MECA

Manufacturers of Emission Controls Association

Diesel Particulate Filters

- Filter Control Capabilities
 - PM -- >90% Reduction
 - CO and HC -- >90%
 - Toxic HCs -- >90% Reduction
- Based Filter Operating Experience
 - Several Thousand Trucks and Buses in Commercial Operation in Europe
 - Demonstration Programs in Taiwan, Korea, Sweden, Germany, England, and Other Countries
 - Peugeot Will Offer Filter-Equipped LDVs in 2000
 - Over 10,000 Nonroad Engines Equipped

Manufacturers of Emission Controls Association

Diesel Particulate Filters Nearly Eliminate PM

![PM Emissions Graph]

- PM Emissions Well Below 0.02 g/bhp-hr Can Be Achieved on Both Fuels (0.008 with 54 ppm S Fuel)
- Significant Reductions in CO and HC Emissions Can Be Achieved

Source: MECA 1999
Filters Very Effective in Reducing Ultra-Fine Particles

- Ultra-Fine Particles Reduced by in Excess of 99.99 %

Source: VERT 1998

Filters More Effective when Used With Low Sulfur Fuel

Source: MECA 1999
Recent Developments in Integrated Diesel Exhaust Emission Control Technologies

Presented to the Mobile Sources Technical Review Subcommittee - 10/13/99

Dale McKinnon, MECA

Manufacturers of Emission Controls Association

Filters Destroy Large Fractions of Toxic Emissions

- PAH Emissions Reduced by 89%

Source: MECA 1999

Manufacturers of Emission Controls Association

NOx Abatement Strategies for Diesel Engines
Active HC-DeNOx-System

Exhaust

NOx

HC - Injection (secondary)

NOx Emissions Are Reduced in Two Steps By Up To 50%

NOx Traps

NO + ½O₂ Lean

CO₂

NO₂

Ba(NO₃)₂

Pt

BaCO₃

Al₂O₃
Recent Developments in Integrated Diesel Exhaust Emission Control Technologies

Presented to the Mobile Sources Technical Review Subcommittee - 10/13/99

Dale McKinnon, MECA

Manufacturers of Emission Controls Association

NOx Traps

Manufacturers of Emission Controls Association

NOx Storage Efficiency

Source: MECA 1999
Cell Geometry Has A Positive Impact on NOx Storage

Source: SAE 1999-01-1279

Urea-SCR Catalyst System

Hydrolysis Catalyst

Ammonia Generation:
\[DC(NH_4)_2 + H_2O \rightarrow CO_2 + 2 NH_3 \]

Selective NOx Reduction:
\[4 NO + 4 NH_3 + O_2 \rightarrow 2 N_2 + 6 H_2O \]
\[HC + O_2 \rightarrow CO (1/3) + CO_2 (2/3) + H_2O \]

Ammonia Blocking (anti slip):
\[4 NH_2 + 3 O_2 \rightarrow 2 N_2 + 6 H_2O \]
\[2 CO + O_2 \rightarrow 2 CO_2 \]
Recent Developments in Integrated Diesel Exhaust Emission Control Technologies

Presented to the Mobile Sources Technical Review Subcommittee - 10/13/99

Dale McKinnon, MECA

SCR Temperature Window

![Diagram showing SCR Temperature Window with different catalysts and their NOx conversion rates]

PLASMA-ASSISTED CATALYTIC NOx REDUCTION SCHEME

![Diagram showing plasma-generated catalyst and high energy electrons for NOx reduction]

- **Potential Reductions**
 - NOx and PM Reductions Up to 80% in Laboratory Environment Have Been Reported
 - Must Be Controlled to Prevent Undesirable Byproduct Formation (e.g. N₂O)
Plasma Reactor Types

- Electron Beam
- Microwave
- High Frequency (1kHz) Pulsed Corona Discharge
 * Can Be Used in Gas Phase
- Dielectric Barrier Discharge
 * Based on O₃ Generator Technology
 * Dielectric Barrier (Al₂O₃) Charges and Extinguishes Discharge
- Packed Bed
 * Material with High Dielectric Constant and Ferro-Electric Properties

NOx Technology Concepts Overview

<table>
<thead>
<tr>
<th>Technology</th>
<th>Performance Range</th>
<th>Potential Commercial Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Lean NOx</td>
<td>NOₓ 25-50 CO >70 HC >70 PM ~ 30</td>
<td>2000</td>
</tr>
<tr>
<td>NOx Adsorber</td>
<td>NOₓ 50-70 CO >70 HC >70 PM > 30</td>
<td>2004</td>
</tr>
<tr>
<td>SCR Urea</td>
<td>NOₓ >80 CO >50 HC >70 PM ≥ 30</td>
<td>2000</td>
</tr>
<tr>
<td>Compact SCR</td>
<td>NOₓ >90 CO >70 HC >70 PM ≥ 30</td>
<td>2004</td>
</tr>
<tr>
<td>Plasma / NOx Cat.</td>
<td>NOₓ >65 CO >50 HC >50 PM ~ 30</td>
<td>Post - 2004</td>
</tr>
</tbody>
</table>
NOx Technologies Operating Experience

- Passive Lean-NOx Catalysts Used on PC in Europe
- NOx Adsorbers Have Been Used in Vehicle Trials
- SCR Used on Stationary Sources, Marine Vessels, Locomotives and Have Been Used in Truck Demonstration Programs
- Plasma Technology Is in the Laboratory Stage

Examples of Integrated Systems
Manufacturers of Emission Controls Association

Diesel Oxidation Catalysts Combined with an Electrically-Powered Supercharger Reduce PM Emissions

- A 50% Reduction in PM Emissions Can Be Achieved

Source: MECA 1999

Manufacturers of Emission Controls Association

SCR With DOC and DPF Performance

- PM Emission Levels Below of 0.01 g/bhp-hr with DPF Technology using 368 ppm S fuel
- PM Emissions less than 0.05 g/bhp-hr Can Be Achieved with DOC Technology and 54 ppm S Fuel

Source: MECA 1999
SCR With DOC and DPF
Performance

Combined with the Low PM Emissions, NOx + HC Levels Below 1.5 g/bhp-hr NOx Can Be Achieved on 368 ppm S Fuels

Source: MECA 1999

System Configuration No.1

Urea

Engine

CATALYST/FILTER

SCR

Oxidation Cat

Removal of HC, CO, PM

Removal of NOx

Removal of NH₃ slip if required

4-way conversion
Recent Developments in Integrated Diesel Exhaust Emission Control Technologies

Presented to the Mobile Sources Technical Review Subcomittee - 10/13/99

Dale McKinnon, MECA

Manufacturers of Emission Controls Association

System Configurations No.2

Engine

Heat Exchanger

Enhances Catalyst Performance

Lean-NOx

Removal of NOx

Catalyst/Filter

Removal of HC, CO, PM

4-way conversion

Manufacturers of Emission Controls Association

Performance of System No.2

- Reductions in CO, NOx, and HC Were Achieved

Source: SAE Paper 1999-01-2924
Recent Developments in Integrated Diesel Exhaust Emission Control Technologies

Presented to the Mobile Sources Technical Review Subcommittee - 10/13/99

Manufacturers of Emission Controls Association

Sulfur Effects

- SO_2 → SO_3 → H_2SO_4 → Sulfate Make
- SO_4^{2-} → Sulfate Poisoning
- Precious Metal
- Transition Metal
- Zeolite or Refractory Oxide Support

Summary of Influence of Fuel Sulfur on Diesel Exhaust Emission Control Devices

- Control Technology
 - Oxidation Catalyst
 - Lean NOx (DeNOx) Catalyst
 - SCR with Urea
 - Catalytic Particulate Filters
 - Particulate Filters with NOx Conversion Catalyst
 - Non-Thermal Plasma
 - NOx Adsorbers

- Sensitivity to Sulfur
 - Moderate
 - Moderate to Extremely High
 - Low, but May Require Oxidation Catalyst for NH$_3$ slip
 - Moderate
 - High When Diesel Fuel Sulfur Exceeds 50 ppm
 - Thought to be Low
 - Extremely High (near zero may be necessary)

Note: To meet upcoming particulate and NOx emission levels and beyond, combinations of devices may be required.

Dale McKinnon, MECA
Conclusions

- Further, Significant Diesel Emission Reductions Are Possible for Both Onroad and Nonroad Vehicles
- Exhaust Emission Controls Are Currently a Largely Untapped Source for Significant Emission Reductions (Simultaneous PM, Toxic HC, and NOx Control)
- NOx Abatement Technologies are Advancing and Several Control Strategies Are Expected to Be Available in the 2004 Time Frame
- Ultra-Low Sulfur Fuel Would Open Significant Additional Opportunities for the Control of Diesel Emissions